Second derivative

In calculus, the second derivative, or the second order derivative, of a function f is the derivative of the derivative of f. Roughly speaking, the second derivative measures how the rate of change of a quantity is itself changing; for example, the second derivative of the position of a vehicle with respect to time is the instantaneous acceleration of the vehicle, or the rate at which the velocity of the vehicle is changing with respect to time. In Leibniz notation: a = d v d t = d 2 x d t 2 , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d^{2}{\boldsymbol {x}}}{dt^{2}}},} where the last term is the second derivative expression. On the graph of a function, the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the opposite way.


This table shows the example usage of word lists for keywords extraction from the text above.

WordWord FrequencyNumber of ArticlesRelevance

This website uses cookies to ensure you get the best experience on our website. Learn more. Got it.