Adiabatic process

An adiabatic process occurs without transfer of heat or mass of substances between a thermodynamic system and its surroundings. In an adiabatic process, energy is transferred to the surroundings only as work. The adiabatic process provides a rigorous conceptual basis for the theory used to expound the first law of thermodynamics, and as such it is a key concept in thermodynamics. Some chemical and physical processes occur so rapidly that they may be conveniently described by the term "adiabatic approximation", meaning that there is not enough time for the transfer of energy as heat to take place to or from the system. By way of example, the adiabatic flame temperature is an idealization that uses the "adiabatic approximation" so as to provide an upper limit calculation of temperatures produced by combustion of a fuel. The adiabatic flame temperature is the temperature that would be achieved by a flame if the process of combustion took place in the absence of heat loss to the surroundings. In meteorology and oceanography, the adiabatic cooling process produces condensation of moisture or salinity and the parcel becomes oversaturated. Therefore, it is necessary to take away the excess. There the process becomes a pseudo-adiabatic process in which the liquid water/salt that condenses is assumed to be removed as soon as it is formed, by idealized instantaneous precipitation. The pseudoadiabatic process is only defined for expansion, since a parcel that is compressed becomes warmer and remains undersaturated.

Words

This table shows the example usage of word lists for keywords extraction from the text above.

WordWord FrequencyNumber of ArticlesRelevance
adiabatic101240.418
process10446450.188

This website uses cookies to ensure you get the best experience on our website. Learn more. Got it.